博客
关于我
快速幂算法介绍
阅读量:243 次
发布时间:2019-03-01

本文共 831 字,大约阅读时间需要 2 分钟。

快速幂算法及其优化

快速幂是一种高效计算数的幂次的方法,避免了传统方法中重复乘法的低效性。通过将指数n分解为二进制形式,快速幂可以在O(log n)的时间复杂度内完成计算。

递归实现

int qpow(int a, int n) {    if (n == 0)        return 1;    else if (n % 2 == 1)        return qpow(a, n - 1) * a;    else {        int temp = qpow(a, n / 2);        return temp * temp;    }}

非递归实现

int qpow(int a, int n) {    int ans = 1;    while (n) {        if (n & 1) {            ans *= a;        }        a *= a;        n >>= 1;    }    return ans;}

快速幂取模优化

为了应对大数计算中的性能问题,快速幂通常结合取模操作。以下是对大素数取模的快速幂实现:

#define MOD 1000000007typedef long long ll;ll qpow(ll a, ll n) {    if (n == 0)        return 1;    else if (n % 2 == 1)        return qpow(a, n - 1) * a % MOD;    else {        ll temp = qpow(a, n / 2) % MOD;        return temp * temp % MOD;    }}

快速幂算法通过将指数二进制分解,减少了计算量。其递归和非递归实现均能显著提升效率,适用于大数运算。通过取模优化,可以进一步处理大素数问题,确保计算结果在可控范围内。

转载地址:http://xsmv.baihongyu.com/

你可能感兴趣的文章
NuttX 构建系统
查看>>
NutUI:京东风格的轻量级 Vue 组件库
查看>>
NutzCodeInsight 2.0.7 发布,为 nutz-sqltpl 提供友好的 ide 支持
查看>>
NutzWk 5.1.5 发布,Java 微服务分布式开发框架
查看>>
NUUO网络视频录像机 css_parser.php 任意文件读取漏洞复现
查看>>
NUUO网络视频录像机 upload.php 任意文件上传漏洞复现
查看>>
Nuxt Time 使用指南
查看>>
NuxtJS 接口转发详解:Nitro 的用法与注意事项
查看>>
NVDIMM原理与应用之四:基于pstore 和 ramoops保存Kernel panic日志
查看>>
NVelocity标签使用详解
查看>>
NVelocity标签设置缓存的解决方案
查看>>
Nvidia Cudatoolkit 与 Conda Cudatoolkit
查看>>
NVIDIA GPU 的状态信息输出,由 `nvidia-smi` 命令生成
查看>>
nvidia 各种卡
查看>>
Nvidia 系列显卡大解析 B100、A40、A100、A800、H100、H800、V100 该如何选择,各自的配置详细与架构详细介绍,分别运用于哪些项目场景
查看>>
NVIDIA-cuda-cudnn下载地址
查看>>
nvidia-htop 使用教程
查看>>
nvidia-smi 参数详解
查看>>
Nvidia驱动失效,采用官方的方法重装更快
查看>>
nvmw安装node-v4.0.0之后版本的临时解决办法
查看>>